

GEOTERMIA: DIMENSIONAMIENTO DE INTERCAMBIADORES PARA INSTALACIONES SENCILLAS

PONENTE: JAVIER SERRANO HERRERA

DIMENSIONES POR kWt DE POTENCIA DE CALEFACCIÓN

TIPO DE INTE	RCAMBIADOR	DIMENSIONES			
Horizontal	Extendido	30 a 60 m ² /kW _t (1)			
Horizoniai	En zanjas	35 a 55 m/kW _t (2)			
Sonda geotérmica		aprox. 15 m/kW _t (1			
Aguas subterráne	as	150 a 200 l/h/kW _t (1)			
Aguas superficiale	es	300 a 400 l/h/kW _t (1)			

Notas: (1) Solo calefacción. Fuente: Office Fédéral de l' Énergie. Suiza

(2) Calefacción y refrigeración. Fuente: Natural Resources Canada

INSTALACIONES PEQUEÑAS:

- Potencia térmica < 30 kW
- Funcionamiento anual < 2.400 h
- Calefacción con o sin agua caliente sanitaria

¿QUÉ SE NECESITA CONOCER?

- Potencia de extracción de la BCG (P_{evaporación})
 (Lo que ha de aportar el suelo o el terreno)
- Condiciones geológicas locales: tipo de suelo o terreno (Conductividad térmica)
- Horas de funcionamiento anual

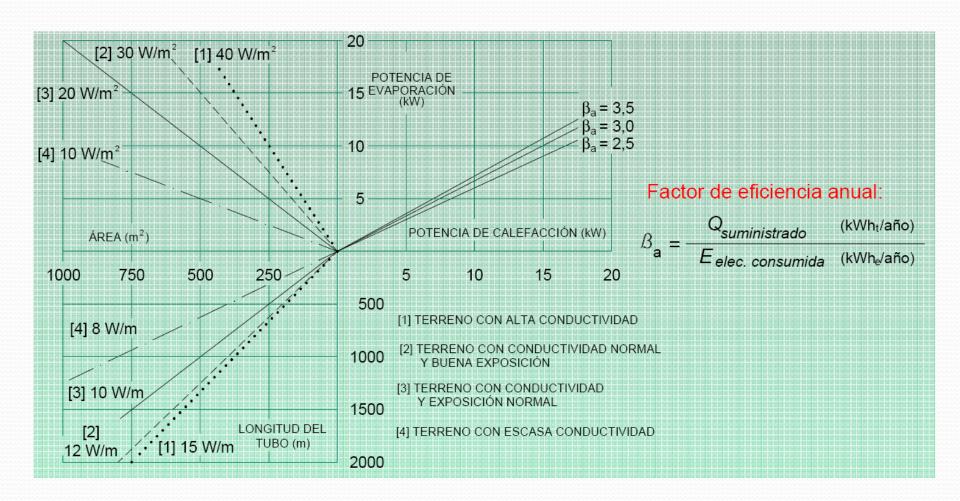
EXTRACCIÓN DE CALOR ESPECÍFICA EN INTERCAMBIADORES HORIZONTALES

SUBSUELO	CAPACIDAD DE EXTRACCIÓN (W/m²)					
	Para 1.800 h	Para 2.400 h				
Suelos no cohesivos secos	10	8				
Suelos cohesivos húmedos	20 -30	16 -24				
Arena/Grava saturada de agua	40	32				

Fuente: VDI 4640 - Part. 2. "Thermal use of underground". Düsseldorf. 2001

CONDICIONES:

- Solo extracción de calor (calefacción y ACS)
- Tubos extendidos o individuales en zanjas
- · Enterrados entre 1,2 y 1,5 m de profundidad entre capas de arena
- · Separados entre 0,3 y 0,8 m (en función del diámetro)
- · Superficie no impermeabilizada
- . No exceder de 50 -70 kWh/(m²·año)


NOMOGRAMA PARA INTERCAMBIADORES HORIZONTALES

CONDICIONES PARA LA UTILIZACIÓN DEL NOMOGRAMA

SUELO	EXTRACCIÓN DE CALOR (W/m²)	TIPO
Arenoso, saturado de agua, con elevada radiación solar	35 a 40	[1]
Limoso-arenoso, húmedo, con exposición regular a la radiación solar	20 a 30	[2] [3]
Pedregoso, seco y sombrío	8 a 12	[4]

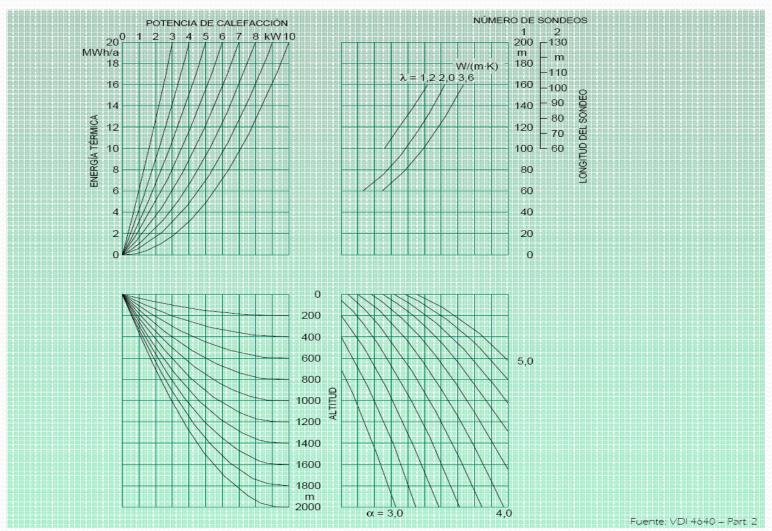
NOMOGRAMA PARA INTERCAMBIADORES HORIZONTALES

INTERCAMBIADORES VERTICALES

EXTRACCIÓN DE CALOR ESPECÍFICA EN INTERCAMBIADORES VERTICALES

SUBSUELO	CAPACIDAD DE EXTRACCIÓN (W/m)			
	Para 1.800 h	Para 2.400 h		
Valores generales:				
Terreno malo (sedimento seco) (λ<1,5 W/(m·K)	25	20		
Terreno duro normal y sedimentos saturados de agua (λ=1,5-3,0 W/(m·K)	60	50		
Roca consolidada con conductividad térmica elevada (λ>3,0 W/(m·K)	84	70		
Rocas individuales:				
Grava, arena, secas	< 25	< 20		
Grava, arena, saturadas de agua	65 - 80	55 -65		
Flujo de agua subterránea elevado en arenas y gravas (para sistemas individuales)	80 - 100	80 - 100		
Arcilla, marga, húmedas	35 - 50	30 - 40		
Caliza (masiva)	55 - 70	45 - 60		
Arenisca	65 - 80	55 - 65		
Rocas magmáticas silíceas (ej.: granito)	65 - 85	55 - 70		
Rocas magmáticas básicas (ej.: basalto)	40 - 65	35 - 55		
Gneis	70 - 85	60 - 70		

Nota: Los valores pueden variar significativamente debido la la textura de la roca como grietas, foliación, meteorización etc. Fuente: VDI 4640 - Part. 2. "Thermal use of underground". Düsseldorf. 2001


CONDICIONES:

- Solo extracción de calor (calefacción y agua caliente)
- · Profundidad del sondeo: entre 40 y 100 m
- Distancia mínima entre dos sondeos: 5 m para 40 50 m de profundidad; 6 m para 50 -100 m de profundidad
- Tubos en doble U con DN 20, 25, 32 o tubos coaxiales con un Ø mín. de 60 mm
- · No es aplicable a un gran número de sondeos en un área limitada

VDI Richtlinien – valeurs possibles de q_{extrait} [W/m] sonde géothermique Underground q extraction (W/m) up to 1800 ore/a up to 2400 ore/a General guideline values Poor underground (dry sediment) (λ<1.5 W/mK) 20 W/m 2 a 15 m Dimensionnement d'un système de chauffage avec Normal rocky underground and water saturated sediment (λ= 1.5 -50 W/m 3 W/mK) Consolidated rock with high thermal conductivity (\(\lambda > 3.0 \text{ W/mK}\) 70 W/m Individual rocks /m Gravel, sand, dry <20 W/m Gravel, sand, water saturated 65 & 🖘 🔌/m 55 - 65 W/m ® W/m For strong groundwater flow in gravel and sand 80 80 - 100 W/m Clay, loam, damp 35/- 50 W/m 30 - 40 W/m Limestone (massif) 45 - 60 W/m 65 (@)W/m Sandstone 55 - 65 W/m 65 ——W/m Siliceous magmatite (e.g. granite) 55 - 70 W/m 40 -65 W/m Basic magmatite (e.g. basalt) 35 - 55 W/m 70 - 85 W/m 60 - 70 W/m Gneiss source: VDI Richtlinien 4060, Blatt 2 (p.17)

COITIM: CURSOS C021/2011: DISEÑO Y CALCULO DE INSTAL. CON ENERGÍA GEOTÉRMICA

LÍMITES NOMOGRAMA SGV

$$\alpha = \frac{Q_H}{(Q_H / \beta_a) - P_p}$$

En la que

a = Valor a introducir en el nomograma

Q_H = Demanda calorífica anual en kWh/a

 β_a = Factor de eficiencia anual

P_P= Cantidad de energía consumida por los componentes auxiliares, (bomba de circulación, sistema de distribución de calor, etc.), en kWh/a.

El nomograma se aplica con los siguientes límites:

Demanda anual energía calorífica 4 – 16 MWh/a

Potencia calorífica 3 – 10 kW

Altitud del lugar 200 – 1.400 m s.n.m.

Conductividad térmica del terreno 1,2 – 4,0 W/(m·K)

Longitud para un intercambiador 60 – 160 m

(Profundidad del sondeo)

Longitud para dos intercambiadores 60 – 100 m

(Dos sondeos de la misma profundidad)

Factor – nomograma 3,8 – 4,6

Fuente: VIDI 4640 – Part. 2

EJEMPLO

DATOS DE PARTIDA: Vivienda familiar

Nº de personas: 4

Superficie habitable: 160 m²

· Antigüedad: > 20 años

Calefacción: 1.500 h/año

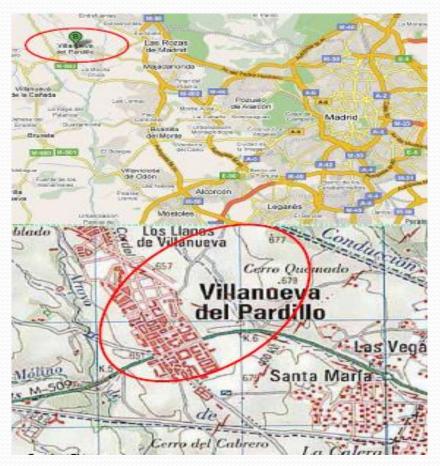
Factor de eficiencia anual de la BCG: 3,5

Situación : Villanueva del Pardillo (Madrid)

POTENCIA ESPECIFICA DE CALEFACCIÓN

TIPO DE EDIFICIO	AISLAMIENTO	POTENCIA DE CALEFACCIÓN (W/m²)
Vivienda familiar	Tradicional	50 a 70
Vivienda familiar	Bueno	40 a 50
Vivienda familiar nueva	Según prescripciones actuales	30 a 40
Administrativo	Tradicional	60 a 80

Fuente: "Dimensionnement des pompes a chaleur". OFEN, Sulza. 2000


AGUA CALIENTE SANITARIA: Potencia térmica: 0,2 kW/persona

Energia térmica: 830 kWh/persona/año

Necesidades de calefacción: 160 m²x 50 W/m²=8.000 W = 8 kW Suplemento de ACS: 0,2 kW/persona x 4 personas =0,8 kW Potencia térmica necesaria: 8 kW + 0,8 kW = 8,8 kW ⇔ 9 kW

SITUACIÓN

Situación: 26 km al NO de Madrid Altitud: 650 - 675 m snm Temperatura media anual: 14,6 °C

Valores Climatológicos Normales. Madrid

Periodo: 1971-2000 - Altitud (m): 667 - Latitud: 40° 24' 40" N - Longitud: 03° 40' 41" O

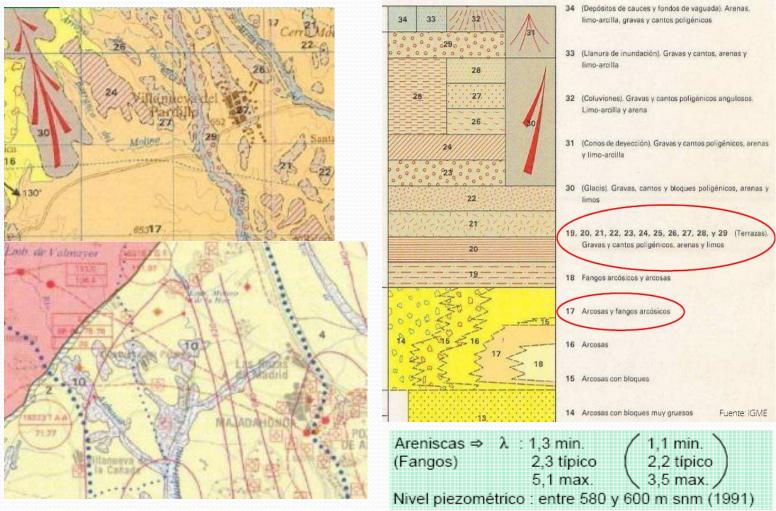
les) T	TM	Tm	R	Н	DR	DN	DT	DF	DH	DD	1
Enero	6.1	9.7	2.6	37	71	6	1	0	5	6	8	148
Febrero	7.9	12.0	3.7	35	65	6	1	0	4	3	6	157
Marzo	10.7	15.7	5.6	26	54	5	0	1	2	1	7	214
Abril	12.3	17.5	7.2	47	55	7	0	1	1	0	5	231
Mayo	16.1	21.4	10.7	52	54	8	0	3	0	0	4	272
Junio	21.0	26.9	15.1	25	46	4	0	3	0	0	8	310
Julio	24.8	31.2	18.4	15	39	2	0	3	0	0	16	359
Agosto	24.4	30.7	18.2	10	41	2	0	2	0	0	14	335
Septiembre	20.5	26.0	15.0	28	50	3	0	2	0	0	9	261
Octubre	14.6	19.0	10.2	49	64	6	0	1	1	0	6	198
Noviembre	9.7	13.4	6.0	56	70	6	0	0	5	1	7	157
Diciembre	7.0	10.1	3.8	56	74	7	1	0	6	4	7	124
Año	14.6	19.4	9.7	436	57	63	4	16	24	16	97	2769

Levenia

- T Temperatura media mensual/anual (°C)
- TM Media mensual/anual de las temperaturas máximas diarias (°C)
- Tm Media mensual/anual de las temperaturas mínimas diarias (°C)
- R Precipitación mensual/anual media (mm)
- H Humedad relativa media (%)
- DR. Número medio mensual/anual de dias de precipitación superior o igual a 1 mm
- DN Número medio mensual/anual de dias de nieve
- DT Número medio mensual/anual de dias de tormenta
- DF Número medio mensual/anual de dias de niebla
- DH Número medio mensual/anual de dias de helada
- DD Número medio mensual/anual de dias despejados
- 7 Número medio mensual/anual de horas de sol

1	Numero	medio	mensual,	anual	ge no	ras	ce	SOI

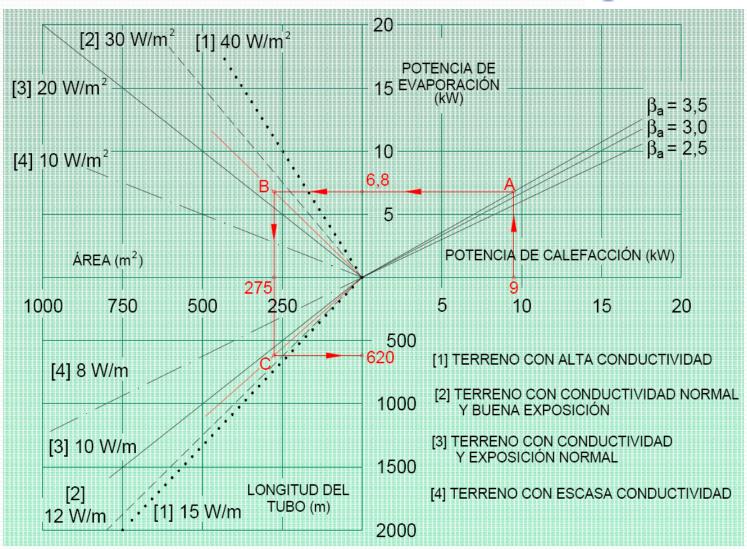
Estación:


Fuente: AEMET

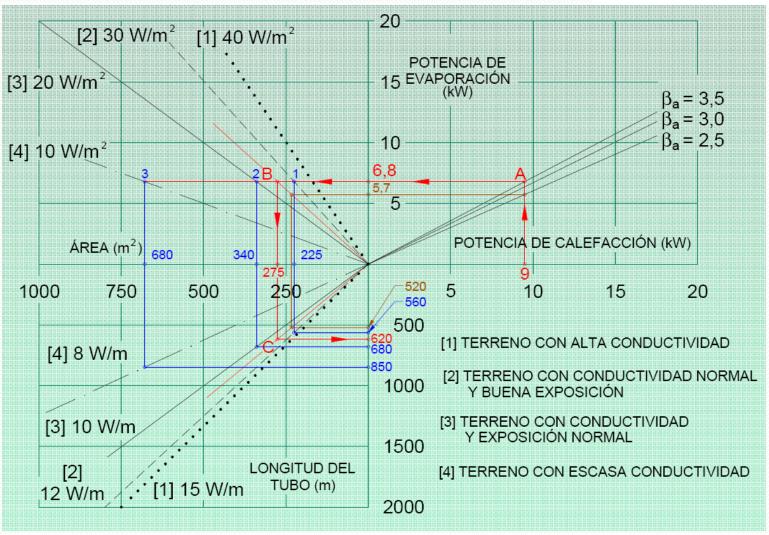
Madrid

Buscer

CONDICIONES GEOLÓGICAS LOCALES


COITIM: CURSOS C021/2011: DISEÑO Y CALCULO DE INSTAL. CON ENERGÍA GEOTÉRMICA

TIPO DE ROCA	Densidad 10 ³ kg/m ³	Conc	ductividad té (W/mK)	Capacidad térmic		
	io ngili	min.	valor típico	max.	(MJ/m³K)	
Rocas magmáticas						
Basalto	2,6 - 3,2	1,3	1,7	2,3	2,3 - 2,6	
Diorita	2,9 - 3,0	2	2,6	2,9	2,9	
Gabro	2,8 - 3,1	1,7	1,9	2,5	2,6	
Granito	2,4 - 3,0	2,1	3,4	4,1	2,1 - 3,0	
Peridotita	3,0	3,8	4	5,3	2,7	
Riolita	aprox. 2,6	3,1	3,3	3,4	2,1	
Rocas metamórficas	30 No. 3				6	
Gneis	2,4 - 2,7	1,9	2,9	4	1,8 - 2,4	
Mármol	2,5 - 2,8	1,3	2,1	3,1	2	
Metacuarcita	aprox. 2,7		aprox.5,8		2,1	
Micasquistos	aprox. 2,6	1,5	2	3,1	2.2	
Esquistos arcillosos	2,7	1,5	2,1	2,6	2,2 - 2,5	
Rocas sedimentarias						
Caliza	2,6 - 2,7	2,5	2,8	4	2,1 - 2,4	
Marga	2,5 - 2,6	1,5	2,1	3,5	2,2 - 2,3	
Cuarcita	aprox. 2.7	3,6	6	6,6	2,1 - 2,2	
Sal	2,1 - 2,2	5,3	5,4	6,4	1,2	
Arenisca	2,2 - 2,7	1,3	2,3	5,1	1,6 - 2,8	
Rocas arcillosas, limosas	2,5 - 2,6	1,1	2,2	3,5	2,1 - 2,4	
Rocas no consolidadas	3					
Grava, seca	2,7 - 2,8	0,4	0,4	0,5	1,4 - 1,6	
Grava, saturada de agua	aprox. 2,7		aprox.1,8		aprox.2,4	
Morrena	353	1	2	2,5	1,5 - 2,5	
Arena, seca	2,6 - 2,7	0,3	0,4	0,8	1,3 - 1,6	
Arena, saturada de agua	2,6 - 2,7	1,7	2,4	5	2,2 - 2,9	
Arcilla / limo, seco	(E)	0,4	0,5	_1_	1,5 - 1,6	
Arcilla / limo, saturado de agua	1 5 2	0,9	1,7	2,3	1,6 - 3,4	
Turba	120	0,2	0,4	0,7	0,5 - 3,8	
Otros materiales						
Bentonita	727	0,5	0,6	0,8	aprox.3,9	
Hormigón	aprox. 2,0	0,9	1,6	2	aprox.1,8	
Hielo (-10 °C)	0,919		2,32		1,87	
Plástico (PE)	349		0,39		B	
Aire (0 - 20 °C, seco)	0,0012		0,02		0,0012	
Acero	7,8		60		3,12	
Agua (+10 °C)	0,999		0,59		4,15	


INTERCAMBIADORES HORIZONTALES

INTERCAMBIADORES HORIZONTALES

SONDA GEOTÉRMICA VERTICAL

POR TABLA DE EXTRACCIÓN DE CALOR ESPECÍFICA

Calor que tiene que aportar el sondeo:

$$Q_{sondeo} = Q_{t\acute{e}rmica} \times \frac{\beta_{a} - 1}{\beta_{a}}$$

$$Q_{sondeo} = 9 \text{ kW } \times \frac{3,5 - 1}{3,5} = 6,43 \text{ kW}$$

(1) Terreno duro normal (60 W/m):

$$\frac{6,43 \text{ kW}}{60 \text{ W/m}} \Rightarrow L_{sondeo} = 117,16 \text{ m}$$

(2) Arenisca (65 - 80 W/m): (tomando valor medio)

$$\frac{6,43 \text{ kW}}{72,5 \text{ W/m}} \Rightarrow L_{sondeo} = 88,68 \text{ m}$$

(3) No optimista (50W/m):

$$\frac{6,43 \text{ kW}}{50 \text{ W/m}} \Rightarrow L_{sondeo} = 128,6 \text{ m}$$

NOTA: (1) y (3) rebasan las condiciones de la VDI 4640 : Profundidad del sondeo entre 40 y 100 m

SONDA GEOTÉRMICA VERTICAL

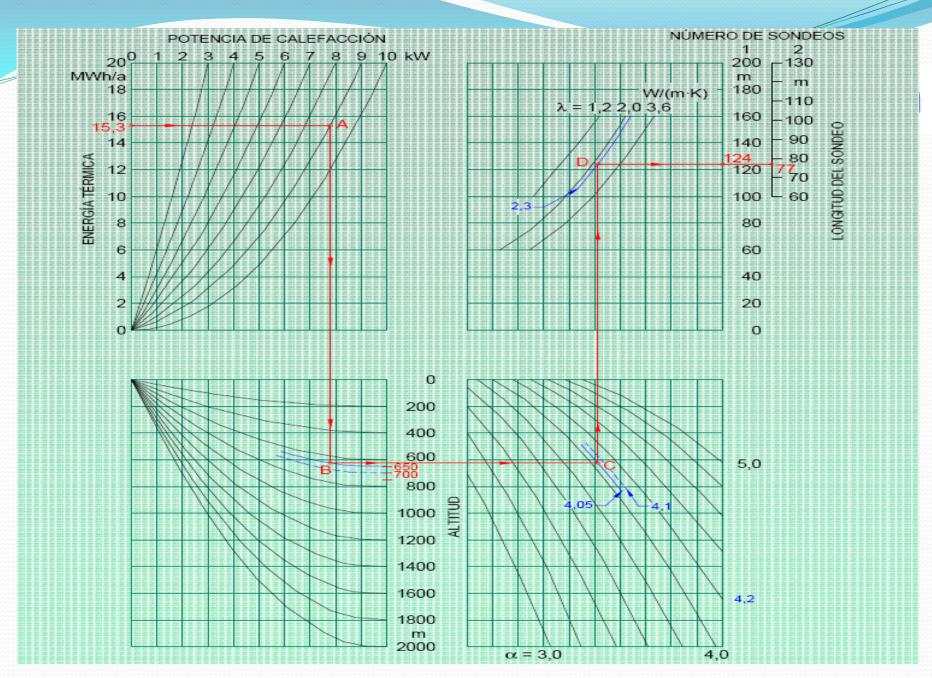
POR NOMOGRAMA VDI 4640

- Potencia térmica necesaria: 9 kW
- Energía térmica anual Q_H:
 - · Para calefacción: 8 kW x 1.500 h/ año = 12.000 kWh/año
 - · Para ACS: 830 kWh/año x 4 personas = 3.320 kWh/año

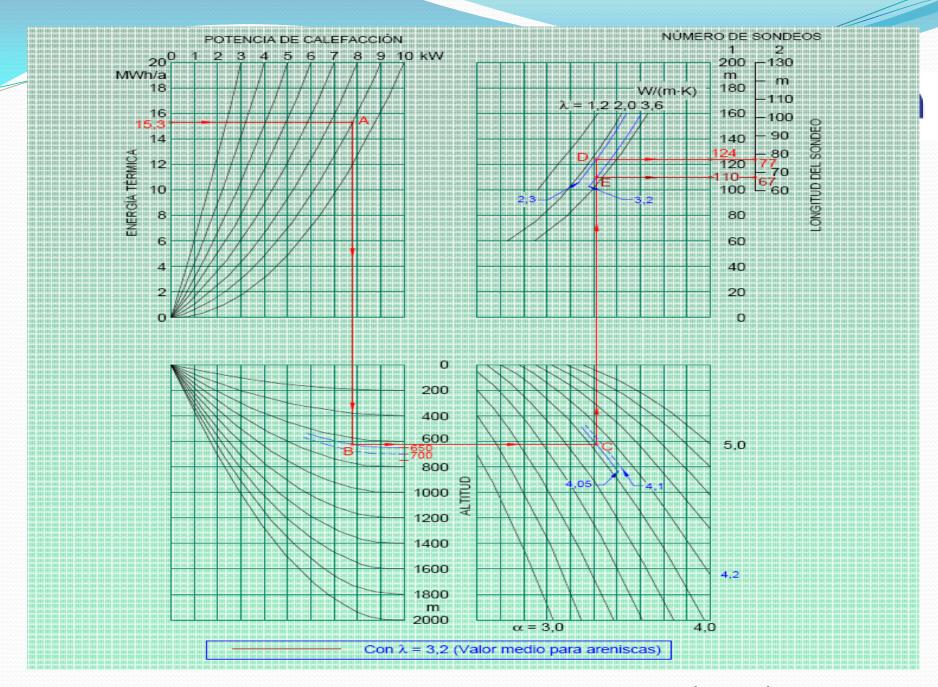
$$Q_{_{\! H}}$$
= 15.320 kWh/año = 15,3 MWh/año

- Altitud: 650 m
- Energía consumida por los componentes periféricos de la BCG :

(Suponiendo una potencia de 0,4 kW)


$$P_p = 0.4 \text{ kW x } 1.500 \text{ h/año} = 600 \text{ kWh/año}$$

• Factor de Nomograma α :


$$\alpha = \frac{Q_H}{(Q_H/\beta_a) - P_p} = \frac{15.320}{15.320/3, 5 - 600} = 4,05$$

- Conductividad térmica λ :
 - · Valor típico de Arenisca en VDI 4640 : λ = 2,3

LONGITUD DEL SONDEO: (usando nomograma) 1 de124 m ó 2 de 77 m

COITIM: CURSOS C021/2011: DISEÑO Y CALCULO DE INSTAL. CON ENERGÍA GEOTÉRMICA

COITIM: CURSOS C021/2011: DISEÑO Y CALCULO DE INSTAL. CON ENERGÍA GEOTÉRMICA

SEGUNDO EJEMPLO

DATOS DE PARTIDA: Vivienda familiar

· Nº de personas: 8

· Superficie habitable: 250 m²

· Construcción: Reciente

Calefacción: 1.600 h/año

Factor de eficiencia anual de la BCG: 3,8

Situación : Villanueva del Pardillo (Madrid)

Necesidades de calefacción: 250 m²x 40 W/m²=10.000 W = 10 kW

Suplemento de ACS: 0,2 kW/persona x 8 personas =1,6 kW

Potencia térmica necesaria: 10 kW + 1,6 kW = 11,6 kW ⇔ 12 kW

POR TABLA DE EXTRACCIÓN DE CALOR ESPECÍFICA

Calor que tiene que aportar el sondeo: $Q_{sondeo} = Q_{térmica} \times \frac{B_a - 1}{B_a}$

$$Q_{sondeo} = 12 \text{ kW x } \frac{3.8 - 1}{3.8} = 8.84 \text{ kW}$$

(1) Terreno duro normal (60 W/m): $\frac{8,84 \text{ kW}}{60 \text{ W/m}} \Rightarrow L_{sondeo} = 147,33 \text{ m}$

(2) Arenisca (65 - 80 W/m): (tomando valor medio) $\frac{8,84 \text{ kW}}{72,5 \text{ W/m}} \Rightarrow L_{sondeo}$ = 121,93 m

(3) No optimista (50W/m): $\frac{8.84 \text{ kW}}{50 \text{ W/m}} \Rightarrow \text{L}_{sondeo} = 176.8 \text{ m}$

NOTA: (1), (2) y (3) rebasan las condiciones de la VDI 4640 : Profundidad del sondeo entre 40 y 100 m

POR NOMOGRAMA VDI 4640

- Potencia térmica necesaria: 12 kW
- Energía térmica anual Q_H:
 - · Para calefacción: 10 kW x 1.600 h/ año = 16.000 kWh/año
 - · Para ACS: 830 kWh/año x 8 personas = 6.640 kWh/año

$$Q_{H}$$
 = 22.640 kWh/año = 22,6 MWh/año

- Altitud: 650 m
- Energía consumida por los componentes periféricos de la BCG : (Suponiendo una potencia de 0,5 kW)

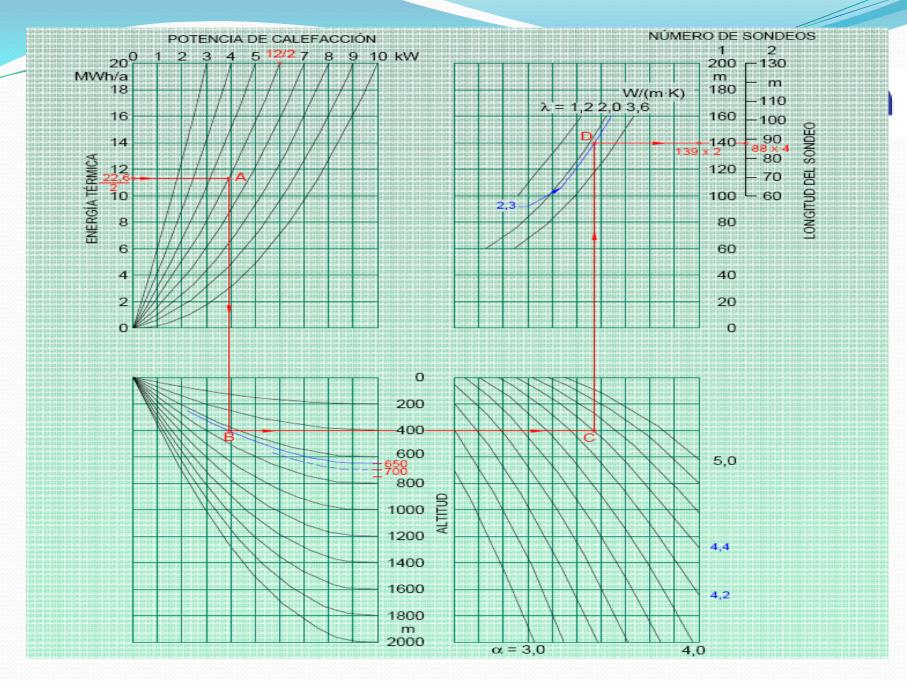
$$P_p = 0.5 \text{ kW x } 1.600 \text{ h/año} = 800 \text{ kWh/año}$$

• Factor de Nomograma α :

$$\alpha = \frac{Q_H}{(Q_H/\beta_a) - P_p} = \frac{22.640}{22.640/3.8 - 800} = 4.38 \iff 4.4$$

- Conductividad térmica λ :
 - · Valor típico de Arenisca en VDI 4640 : λ = 2,3

Potencia térmica y Energía térmica anual rebasan los límites del nomograma


REGLA:

- · Se diseña la mitad del sistema manteniendo P_{o} y α
- · El resultado se multiplica por 2

(Reuss y Sanner)

- Potencia térmica : 12/2 kW = 6 kW
- Energía térmica anual Q_H: 22,6/2 MWh/año = 11,3 MWh/año
- Altitud: 650 m
- Energía consumida por los componentes periféricos de la BCG : $P_p = 800 \text{ kWh/año}$
- ullet Factor de Nomograma lpha : 4,4
- Conductividad térmica λ : 2,3

SOLUCIÓN: (usando nomograma) 2 sondeos de 139 m ó 4 de 88 m

COITIM: CURSOS C021/2011: DISEÑO Y CALCULO DE INSTAL. CON ENERGÍA GEOTÉRMICA

GRACIAS POR SU ATENCIÓN